
Solid-State Electronics Vol. 35, No. 7, pp. 953 959, 1992 0038-1101/92 $5.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1992 Pergamon Press Ltd 

A UNIFIED MOBILITY MODEL FOR DEVICE 
SIMULATION--I. MODEL EQUATIONS AND 

CONCENTRATION DEPENDENCE 

D. B. M. KLAASSEN 
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands 

(Received 14 August 1991; in ret, ised form 18 December 1991) 

Abstract--The first physics-based analytical model is presented that unifies the descriptions of majority 
and minority carrier mobility and that includes screening of the impurities by charge carriers, electron-hole 
scattering, clustering of impurities and the full temperature dependence of both majority and minority 
carrier mobility. Using this model, excellent agreement is obtained with published experimental data on Si. 
The model is especially suited for device simulation purposes, because the carrier mobility is given as an 
analytical function of the donor, acceptor, electron and hole concentrations and of the temperature. 

I. INTRODUCTION 

The results of device simulations depend critically on 
the physical models used, e.g. lifetime, recombination 
and mobility of carriers, and bandgap narrowing. 
Sometimes experimental information is only available 
on a combination of mechanisms, e.g. bandgap nar- 
rowing in combination with mobility. With respect to 
the carrier mobility, however, independent data are 
also available. During the last few years, a number of 
experimental results have been published which show 
that, starting at a doping concentration of 10 ~8 cm 3, 
the minority carrier mobility in Si exceeds the ma- 
jority carrier mobility, up to a factor of three at a 
concentration of 1020 cm 3 (for electrons see Ref. [1]; 
for holes see Refs [2-6]). 

Theoretical calculations have also shown that the 
minority carrier mobility may exceed the majority 
carrier mobility at low temperatures[7] or at high 
doping concentrations[8]. However, they did not re- 
sult in formulations for the mobility that can be used 
in device simulation programs. Several analytical fit 
functions describing the experimental data on the 
minority carrier mobility as a function of the impu- 
rity concentration have been proposed[I,2,3,5]. How- 
ever, for device simulation programs the mobility 
should be expressed as a single function of the local 
donor and acceptor concentrations. Switching be- 
tween separate functions for minority and majority 
mobility may result in abrupt changes in mobility and 
therefore cause numerical problems. This problem is 
avoided in the mobility model published by Shigyo 
e t  al.[9]. As their model is based on empirical ex- 
pressions for majority and minority mobility as func- 
tions of donor and acceptor concentration, it is 
restricted to room temperature and, moreover, elec- 
tron-hole scattering is not taken into account. For 
the minority carrier mobility electron-hole scattering 

is as important as impurity scattering, because the 
concentration of unlike carriers equals the impurity 
concentration. 

In the model presented here the main contributions 
to the mobility are taken into account: besides lattice, 
donor and acceptor scattering, electron-hole scatter- 
ing is also incorporated. Screening of impurities by 
charge carriers and the temperature dependence of 
both majority and minority carrier mobility are in- 
cluded. The model is carefully constructed to yield a 
majority carrier mobility that is exactly equal to the 
empirical expression published by Masetti et  al.[10], 
which is widely used in device simulation programs. 
To obtain this goal this expression is used as a 
starting point to identify the scattering mechanisms 
contributing to the majority carrier mobility. Next, 
theoretically calculated mobility ratios are used to 
obtain the impurity as well as the electron hole 
scattering mobility. Analytical fit functions are pre- 
sented, which describe the theoretically calculated 
ratios in fair detail. The large number of compu- 
tations on which these fit functions are based were 
only feasible by the use of theoretical approximations 
(e.g. Boltzmann statistics, JWKB phase shift approxi- 
mation) that contain all the essential details. Using 
the analytical (fit) functions, the carrier mobility is 
given as an analytical function of the donor, acceptor, 
electron and hole concentrations. Therefore, the re- 
suiting model is especially suited for device simu- 
lation purposes. 

The main features of the model and a limited 
comparison with experimental data have been pub- 
lished elsewhere[l 1]. Here the full details and a 
complete comparison with experimental data on the 
concentration dependence of the mobility will be 
presented. A comparison with experimental data on 
the temperature dependence of the mobility will be 
published in a companion paper[12]. 
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2. C O N T R I B U T I O N S  TO T H E  MOBILITY 

There are four contributions to the carrier mobil- 
ity: lattice, donor, acceptor and electron hole scatter- 
ing. Elec t ron~lec t ron  and hole-hole scattering is not 
accounted for, as it represents only a second-order 
effect on the mobility[13]. In this section the four 
contributions to the mobility mentioned above will be 
discussed. 

Table I. Model parameters for the majority electron mobility (As 
and P) and majority hole mobility (B) given by eqn (I) (see Ref. [10] 

and Fig. I) 

Parameter A ~ A s  P B 

llma~(cm2V 'S ') 1417.0 1414.0 470.5 
#min(cm2V I S I) 52.2 68.5 44.9 
#~(cm2V ~s ~) 43.4 56.1 29.0 
Nrcl, ] (cm 3) 9.68 x 10 ~ 9.20 x I0 I~' 2.23 × 10 ~7 
Nr.f2(cm 3) 3.43 x 10 > 3.41 × 102° 6.10 x 1020 
:q 0.68 0.711 0.719 
~2 2.0 1.98 2.0 

2.1. Lattice scattering 

Experimental data on the majority electron and 
hole mobilities as functions of  impurity concentration 
N at 300 K are well described by ([10] and Fig. 1): 

flmax - -  ,ttmin Ill 
,u =/4,,m -I- 1 +(N/Nrer. ly '  1 +(Nr~r,2/'N) ~:" (1) 

The coefficients in eqn (1) for electrons and holes are 
given in Table 1 (see also Ref. [10]). Since we want to 
retain this good description of  the majority mobility 
in our model, we use eqn (1) as a starting point. At 
very low impurity concentrations the only scattering 
mechanism is lattice scattering. So the electron mobil- 
ity due to lattice scattering #~.e and the hole mobility 
due to lattice scattering l*h.L are the low-concentration 
limits of  eqn (1): 

~,.L = /1 . . . .  (2) 

where the subscript i stands for e or h, and lama x has 
to be chosen from Table 1 accordingly. 

2.2. Majority impuriO, scattering including screening 

The third term on the right-hand side of  eqn (1) is 
negligible up to doping levels of 102°cm 3 (see 
Fig. 1). Effects of ultra-high concentrations on the 
carrier mobility, described by this third term, will be 
treated in a separate section (Section 3). The remain- 
ing two terms in eqn (1) are the familiar Caughey-  
Thomas expression for the carrier mobility[21]. The 
electron mobility due to donor  scattering/&.o and the 
hole mobility due to acceptor scattering l~h.A are 
obtained by subtracting the lattice scattering mobil- 
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Fig. 1. Majority electron mobility as a function of the donor 
concentration. Symbols represent literature data: O[14]; 
All5]; +[16]; x [17]; O[18 20]; and V[10]. The dashed line 

represents the first two terms of eqn (1). 

ity, 12e. L or #h.L, from eqn (1) using Matthiesen's rule. 
The resulting expression reads: 

t,~.,(U,) = , , , . , , . ~ f )  + # .... (3a) 

with 

and 

Pi..,v - (3b) 
]'/max - -  ]Imin 

~min ~/rna× 
- , ( 3 c )  

]Ai'c #max --  ]2rain 

where the subscripts (i, l) stand for (e, D) or (h, A); 
N D is the donor and N A is the acceptor concentration. 
The parameters /~ .... /~mi,, N~er,, and ~i have to be 
chosen from Table l accordingly. It should be noted 
that Matthiesen's rule, which is used to obtain the 
contribution to the mobility given by eqn (3a), is an 
approximation in itself. As, however, Matthiesen's 
rule will again be used to sum all contributions to the 
mobility in Section 4, possible errors may cancel. 

At high carrier concentrations carriers tend to 
screen impurities from other carriers. Consequently, 
the Brooks-Herring theory, which starts from a 
screened Coulomb potential, yields a collison cross- 
section for impurity scattering that depends only on 
the carrier concentration c (see e.g.[22]). The collision 
cross-section for majority impurity scattering or,. I ob- 
tained from eqn (3a) reads: 

ffi, I ~ c { N ,  IQI} I 

= {t&~(Nr<,)=,(N~) ~ ~' +,u+.~N,} ~. (4) 

Following the Brook~Her r ing  theory by simply re- 
placing the impurity concentration N~ by the carrier 
concentration c in eqn (4), yields an infinite collision 
cross-section at zero carrier concentration (i.e. weak 
screening). This problem is solved in the statistical 
screening theory of  Ridley[13,23,24], which merges 
the Conwell-Weisskopf[24,25] and Brooks-Herr ing 
approaches: ~,.z is at low concentrations a function of 
N, and at high concentrations a function of  c. As the 
second term in eqn (4) is predominant at high concen- 
trations, in our approach only in this term is the 
impurity concentration N t replaced by the carrier 
concentration c. The resulting expression for #,.~ 
reads: 

# , . , ( N , , c ) = # i . N ~ T f  ; +#i.c ~ - (5) 
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From eqn (5) it can be seen that due to screening at 
high impurity concentrations the impurity scattering 
mobility increases with the carrier concentration. 

2.3. Minority impurity scattering 

Already in a paper published in 1957 Blatt[7] 
showed that at low temperatures the Born approxi- 
mation breaks down and that from the superior 
partial-wave method it can be concluded that "in that 
energy range majority impurities scatter much more 
effectively than minority impurities". A similar 
breakdown of the Born approximation occurs at high 
carrier concentrations[8]. In the partial-wave method 
the collision cross-section for l inear-momentum 
relaxation a~ can be evaluated from the quantum 
mechanical phase shifts using eqn (6.29) of Ref. [26]. 
Using the JWKB approximation for the phase shifts 
(see eqn (IVb.lc) of Ref. [27]; [28]) we calculated 
the ratio G(P) between the collision cross-sections 
for repulsive (a~,~¢p) and attractive (a~,,,~) screened 
Coulomb potentials (see Fig. 2): 

O'r.re p O'mi n //maj /4,D ~h,A G(P) -- - ~ or ~ , (6) 
O'r.attr Gmaj  ~min ~e,A ~h.D 

as a function of 

P = 4k2r~, (7) 

where k is the wave vector and r 0 is the Debye 
screening length[13]. In the theoretical calculation of 
the mobility from the energy-dependent collision 
cross-section, this parameter P is evaluated at an 
energy of 3k B T, where ka is Boltzmann's constant 
and T is the temperature (see p. 267 of Ref. [26]). 
Consequently, we also evaluated the parameter P 
given by eqn (7) at this temperature, yielding (with 
the permittivity of Si): 

where m is the effective carrier mass, mo is the free 
carrier mass, T is the temperature in kelvin and c is 
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Fig. 2. The ratio G(P) calculated as a function of P [see 
eqns (6) and (8)] for four different temperatures and an 
effective carrier mass equal to the free carrier mass. The 
dashed line represents the analytical fit given by eqn (9). 

Table 2. Numerical values for the constants s i in eqn (9) and r~ in 
eqn (12) 

i s i r, 

I 0.89233 0.7643 
2 0.41372 2.2999 
3 0.19778 6.5502 
4 0.28227 2.3670 
5 0.005978 -0 .01552 
6 1.80618 0.6478 
7 0.72169 

the carrier concentration in cm-3. From Ref. [7] it 
can be seen that at given P the cross-sections are still 
a function of carrier mass and temperature. From 
Fig. 2 it can be seen that the ratio G(P) given by 
eqn (6) for fixed P increases with temperature. 
Additional calculations were performed for different 
values of the carrier mass and at the same tempera- 
tures as given in Fig. 2. These results showed that the 
ratio G(P) for fixed P and temperature increases with 
decreasing carrier mass. All results could be described 
by an analytical fit formula (see Fig. 2): 

G(P) = 1 -  sj 
s2 [m° T ~ ' P  Is3 

S5 
+ / ( m a 0 0 ~ ' p ~ " '  (9) 

( \ m  0 T ] J 

where T is the temperature in kelvin. The numerical 
values of the constants in this formula are given in 
Table 2. It should be noted that the accuracy of the 
JWKB approximation for the phase shifts was 
checked against the results obtained by Blatt (Fig. 6 
of Ref. [7]). For all values of P with G(P)~<l  
good agreement was obtained. Only at very small 
values of P did differences occur due to the JWKB 
approximation. 

The contribution to the electron mobility due to 
acceptor scattering ~e.A and the contribution to the 
hole mobility due to donor scattering /~h.O are now 
obtained from: 

/-te,D(ND = NA, C) 
G(P¢) 

#0,A (N~, c) 

and 

]Ah, D (N o , c) 
Uh,A (NA = ND, C) 

G(Ph) , (10) 

where/re, D and #h,A are given by eqn (5). The subscript 
e and h of P indicates that the effective electron 
and hole mass, respectively, has to be used in 
eqn (8). 

2.4. Electron-hole scattering 

As far as the attractive interaction potential for 
e l e c t r o n - h o l e  scattering is concerned ,  ho les  can  be 
regarded as moving d o n o r s  and  e lec trons  can be 
regarded as moving aeeeptors. The relaxation time 

SSE 35/7--F 
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for the linear momentum of the primary scatterer r 
in a system of two moving scattering partners is[29]: 

I 2riM2 1 v: 0 -- = - -  COS 

T dr~ =0 Oo=o \ v i  

xgt r~v~s in0d0dv2 .  (11) 

where v~ is the primary velocity, v2 is the secondary 
velocity, 0 is the angle between v~ and v~, g is the 
relative velocity, f :  is taken to be the Boltzmann 
distribution function normalized to the concentration 
of  secondary scatterers; and M 2 = m-,/(m~ + m, ) ,  with 
mt and m 2 the mass of the primary and secondary 
scatterers, respectively. From the relaxation time 
given by eqn (11) the mobility can be evaluated using 
standard procedures (see eqn (8.25) and p. 267 of  
Ref. [26]). The mobility ratio F ( P )  between station- 
ary secondary scatterers with infinite mass and mov- 
ing secondary scatterers with finite mass can be 
calculated accurately using the Brooks-Herr ing (or 
Born) approximation, which yields for attractive 
potentials almost the same collision cross-sections as 
the partial-wave method (see Fig. 6 of  Ref. [7]). At 
fixed P the F ( P )  is still a function of  the mass ratio 
but independent of the temperature (see Fig. 3). 
All results could be described by an analytical fit 
formula: 

mt 
r t P'~ + r2 + r 3 - -  

m 2 
F ( P )  = (12) 

mt 
P'~ + r4 + r~ - -  

m2 

The numerical values of the constants in this formula 
are given in Table 2. 

The contribution to the electron mobility due to 
hole scattering ~to. h and the contribution to the hole 
mobility due to electron scattering l~h.~ are now 
obtained using: 

~t~.h(p, c) = F(P~)#e.~(ND = p ,  c) 

and 

#h.~(n, C) = F(Ph)I~h.A(NA = n, c), (13) 

:::L m. 
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Fig. 3. The function F(P) calculated as a function of P [see 
eqns (8)] for three different mass ratios. The dashed line 

represents the analytical functions given by eqn (12). 
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Fig. 4. Majority electron mobility as a function of the donor 
concentration. Symbols represent literature data: O[14]; 
A[15]; +[16]; ×[17]; O[18 20]; and V[10]. The dotted line 
represents the first two terms of eqn (1) and the dashed line 

represents all three terms of eqn (l). 

where/~e.D and Vh.A are again given by eqn (5); p is the 
hole concentration and n is the electron concen- 
tration. It should be noted that as F(P)<~ 1/G(P) ,  
carrier scattering is more important for the minority 
carrier mobility than impurity scattering. 

3. U L T R A - H I G H  C O N C E N T R A T I O N  E F F E C T S  

At ultra-high concentrations the Caughey Thomas 
formula no longer suffices to describe the carrier 
mobility and the full formula of Masetti et al.[10] has 
to be used [see eqn (1) and Fig. 4]. These effects of  
ultra-high concentrations on the mobility represented 
by the third term on the right-hand side of  eqn (1), 
can be accounted for by assuming that above an 
impurity concentration of  10 2o cm 3 the carriers are 
no longer scattered by impurities possessing one 
electronic charge and a concentration Nt, but by 
impurities with Z electronic charges and a "cluster" 
concentration N ~ = N / Z .  The concentration of  
charge carriers c is not affected. In the Appendix it is 
shown that these ultra-high concentration effects on 
the carrier mobility can be modelled effectively by 
replacing N~ by Z x N I in eqn (5). This modified 
majority impurity scattering mobility is added to the 
lattice scattering mobility using Matthiesen's rule. 
The resulting mobility is now equated to the full eqn 
(1). Solving for Z at each impurity concentration N t 
yields the "clustering" function Zz(Nt), which can be 
described in reasonable detail by the following ana- 
lytical fit function (see Fig. 5): 

1 
Z I ( N I )  = 1 + / N r e f j \ 2 .  (14) 

The subscript I indicates that these calculations have 
to be done for each set of parameters given in Table 
1. The sets for As and P yielded the same results within 
a few percent and can be described by CD = 0.21 and 
Nref, n = 4 . 0  x 102°cm -3. For B we found C A = 0 . 5 0  

and Nref, A = 7.2 X 102°cm -3 (see Fig. 5). 
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Fig. 5. The clustering functions Z D (C)) and Z, (Fq) as a 
function of N o and N A, respectively. The dashed line 

represents the analytical functions given by eqn (14). 

4 .  M O D E L  E Q U A T I O N S  

We can now obtain the electron mobility/re and the 
hole mobility /~h as functions of the donor, acceptor, 
electron and hole concentration. 

Starting with ionized donor and acceptor concen- 
trations, ND.~ and NA. ~, the clustering functions have 
to be applied to calculate the donor and acceptor 
concentrations ND and NA, respectively, to be used in 
the model [see eqn (14)]: 

N D = Z D ( N D . s ) N D ,  s 

and 

NA = ZA(NA.~)NA. ~. (l 5) 

The problem of weak screening [P--* oo if c--*0, see 
eqn (8)] is solved by taking for parameter P a 
weighted harmonic mean of the expression given by 
eqn (8) for the Brooks-Herring (or Born) approach 
and its equivalent given by eqn (A3) for the Conwell- 
Weisskopf approach: 

Pi(Nl, C ) = F  f c w  + f S H  ] -1  (16) 
Lecw,,(N+) ~ ' 

where the subscript i stands for e or h. If the carrier 
concentration equals the impurity concentration, P~ 
will be proportional to Pcw.~ at low concentrations 
and to Pan,, at high concentrations (cf. the statistical 
screening theory of Ridley[13,23,24] and Section 2.2). 
Note that in eqn (16) the same weighting factors are 
used for electrons and holes. 

Using Matthiesen's rule the total carrier mobility/4 
is now [see eqns (2), (5), (10) and (13)]: 

]2i-I  = ~li, Ll -~ ~i3)l -4- ~i,  Al "~ #i,] 1 . (17) 

where j = h if i = e a n d j  = e if i = h. The expression 
for P+ given by eqn (16) and the last three terms in eqn 
(17) as given by eqns (5), (10) and (13) have been 
derived for the situation where there is only one type 
of scattering partner. In our model we have three 
types of scattering partners for electrons as well as for 
holes. In order to ensure that only truly two-body 
nearest-scatterers are counted among any of the 
possible scattering partners, in the Conwell- 

Weisskopf expression for Pcw,~ [see eqn (A2)], the 
impact parameter has to be limited to half the average 
separation distance of all scattering partners irrespec- 
tive of the type. Consequently, in the evaluation of 
eqn (16) instead of Nl: 

Ue,~c= No + NA + p (18a) 

and 

Nh,sc= NA + ND + n, (18b) 

have to be used. Following the same approach for the 
collision cross-sections in P~,D, #i,A and pi.j [see eqn 
(AI)], we find for /4.O+A+j defined by: 

~/i.DI4. A + j  = f l i ~ )  I "4- 12i.A I -4- ,Ui5  I ,  (19) 

the following expression: 

/4,D + A +i(ND, NA,n ,P)  

N,.sc /N,ef.,):' [n  +p'~ 

Ni.~c.eer\N,.~J 

where 

P 
Ne,~,e~ = ND + G(Pe)NA "4 F(P+) ' (21a) 

and 

n 
Nh,~.eer = NA + G(Pn)No "4- - -  (21b) 

F(Ph) " 

An additional advantage of eqns (18-21) is the 
simplification of the computational procedure. 

5.  C O M P A R I S O N  W I T H  E X P E R I M E N T A L  D A T A  

In our model developed so far there are four 
parameters: the electron and hole masses m e and m h 
and the weight factors fcw and fBH in eqn (16). 
Experimental data are available on the majority 
mobility, the minority mobility and on the effect of 
electron-hole scattering[30,31]. We designed the 
model to yield for the majority mobility exactly the 
same results as the expression given in eqn (1). 
Consequently, there is good agreement between 
model and experimental data (see Figs 1 and 4). 

In a simultaneous interpretation of the experimen- 
tal data on minority electron mobility, minority hole 
mobility and electron-hole scattering, the optimal set 
of parameter values was determined. For mh/m e = 
1.258, few = 2.459, fBH = 3.828 and me/m o ranging 
from 0.3 to 1.0, about the same agreement between 
model calculations and experimental data was found. 
As for the larger m e values the agreement was slightly 
better, we obtained me = rn0 and m h = 1.258m0. In 
Figs 6-8 model calculations using these parameters 
are compared with the available experimental data. 

For the electron minority mobility our model gives 
about the same results as the fit of Swirhun et a/.[l] 
and good agreement with the experimental data is 
obtained (see Fig. 6). For the hole minority mobility 
agreement with experimental data and the fit of 
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del Alamo et a/.[2,3] is obtained only at high con- 
centrations. At low concentrations our model yields 
a minority hole mobility almost equal to the majority 
hole mobility and smaller than the experimental data 
of  Dziewoir and Silber[32] (see Fig. 7). At this point 
it is interesting to note that at low concentrations 
experimental data and our model show a minority 
electron mobility equal to the majority electron 
mobility. 

Dziewior and Silber found at 1017cm 3 a minority 
hole mobility almost equal to the lattice scattering 
mobility. Their observations are in disagreement 
with those of  Dannh/iuser and Krausse[30,31] who 
have found that at this concentration electron-hole 
scattering reduces the mobility by a factor of  two (see 
Fig. 8). Moreover,  hole~tonor  scattering which is not 
negligible at these concentrations, reduces the min- 
ority hole mobility even further. In our physics-based 
model the effects of  minority impurity scattering 
[function G(P)] and electron hole scattering [func- 
tion F(P)] are linked through the parameter P. 
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represents the minority hole mobility using our new 
model; and the dotted curve represents the majority electron 

mobility. 
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Fig. 8. Sum of electron and hole mobility as a function of 
carrier concentration. Symbols represent experimental data 
measured in the intrinsic region of a pin-diode as a function 
of the injected carrier concentration (n =p): 0[30]; and 
O[31]. Curves indicate model calculations: the dotted line 
represents a temperature of 300 K; the dashed and solid lines 
represent a temperature increasingly linearly with carrier 
concentration from 300 K at low concentrations to 400 and 

500 K, respectively, at 10 ~8 cm 3. 

Moreover,  effects for minority electrons are related to 
those for minority holes by the effective masses 
occurring in the expression for the function F ( P ) .  

Consequently, varying the parameters in our model 
does not result in simple independent curve-fitting of  
the data in Figs 6-8. Using the parameters obtained 
in the simultaneous interpretation of  all the exper- 
imental data our model yields results which, in the 
discrepancy between the results of Dannh/iuser and 
Krausse and those of  Dziewior and Silber, tend to 
favour the former. 

At low concentrations, good agreement between 
our model and the experiments of  Dannh/iuser and 
Krausse is obtained, while using room temperature 
our model yields deviations at high concentrations. 
At these high concentrations in the experiments of 
Krausse[31] quite a large power (400 W) is dissipated 
in a rather small volume (1 mm3). In spite of the short 
pulse widths used (100#s), computer  simulations 
showed that a temperature increase of  more than 
150 K is quite realistic. With this temperature in- 
crease[12] our model also agrees at high concen- 
trations with the data of Dannhfiuser and Krausse. 

6.  C O N C L U S I O N S  

The first physics-based analytical model is pre- 
sented that unifies the descriptions of  majority and 
minority carrier mobility and that includes screening 
of the impurities by charge carriers, electron-hole 
scattering and clustering of  impurities. The model is 
especially suited for device simulation purposes, be- 
cause the electron and hole mobility are given as 
analytical functions of  local variables: ionized donor, 
ionized acceptor, electron and hole concentrations. 
The excellent agreement between our model and 
published experimental data on the carrier mobility in 
Si ensures that our model is a sound basis for a 
revised determination of  the bandgap narrowing[36] 
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and  for  an  ex tens ion  to less t h o r o u g h l y  inves t igated 
aspects  o f  the  mobi l i ty ,  e.g. the  t e m p e r a t u r e  depen-  
dence  o f  the  minor i ty  carr ier  mobility[12]. 
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AP P ENDIX 

In this Appendix the expression for the majority impurity 
scattering mobility given by eqn (5) is modified to account 
for the clustering of impurities possessing one electronic 
charge and concentration N~ into clusters with Z electronic 
charges and a concentration N~ = NflZ. 

The collision cross-section for majority impurity scatter- 
ing modified to account for screening reads [see eqns (4) 
and (5)]: 

a,ao({Nl#ia} i __ ~1 1 al 1. -- {pi.N(Nref, l)  (NI) + #,.c} ( i l )  

The second term stems via the statistical screening theory 
of  Ridley[13,23,24] from the Brooks-Herring (or Born) 
approach. In this formulation the collision cross-section is 
a function of the parameter PBH given by eqn (8): 

Pm~ 1"36×102°(~0)  ( c  300T) 2' (8) 

which is independent of the charge on the impurity (see e.g. 
[13]). The first term in eqn (AI) stems via the statistical 
screening theory of Ridley from the Conwell-Weisskopf 
approximation. In this formulation the collision cross- 
section is a function of the parameter Pew given by (see e.g. 
[13]): 

/ 8n 'E \2  2 (_ 4n,E "]2 
Pew = t ~ . e T )  bm,x = \ Z e 2 N ~ , j ,  (A2) 

where E is the permittivity, E is the energy of the charge 
carrier, e is the electronic charge, Ze is the charge on the 
impurity and bma x is the maximum impact parameter. The 
impact parameter is the distance between the impurity and 
the initial line of motion of the carrier. In the Conwell- 
Weisskopf approximation this impact parameter is limited 
to half the average separation distance of the impurities 
(bm~ x = N f  J~3/2). Evaluating Pew at E = 3k a T [as Pan; see 
eqn (8)], one obtains for Si: 

( 1 / T \3) 23 
Pew = 3.97 × 1013~-yNllt30-0) ~ , (A3) 

where T is the temperature in kelvin and N t is the impurity 
concentration in cm 3. From e.g. [13], it can be seen that 
in both the Brooks Herring and the Conwell-Weisskopf 
approaches the collision cross-section is proportional to Z 2. 
This leads to the following expression for a~.~ modified for 
impurities with charges larger than one electron charge: 

- t  = za{l_Q,v(Nref, i )=, (~t,lOC { glld~,l } 

x ( Z 3 N t ) ' - " + l a , . c t T ) c ;  . (A4) 

In eqn (A4) we have also accounted for the temperature 
dependence of the parameters P. In converting the collision 
cross-section given by eqn (A4) back to the mobility one 
should note that the energy-dependent prefactor in the 
relaxation time (E 3'2 for both BH and CW; see Ref. [13]) 
yields a temperature-dependent prefactor in the mobility of 
T ]/2 (see p. 267 of Ref. [26]). Taking this into account, one 
finds for the mobility #~a: 

/ T \ 3 ~ -  1 .5 /N \ ~  
~i , l (Ni ,  c )  = Z I - ~' ref, t 

/3oo '~oy  c 
+'ui'<t~) t ~ ) "  (A5) 

At high concentrations where the third term on the right- 
hand side o feqn  (1) becomes important, the second term on 
the right-hand side of  eqn (A5) is predominant. In the 
calculations to obtain Z (see Section 3) the approximation 
Z ~- ' ' -~  1 could be made without loss of  accuracy. Substi- 
tuting the cluster concentration NflZ for Nt in eqn (A5) now 
yields a mobility depending on Z × N z. 


